跳转至

LLM

Transformer 中的 Positional Encoding Layer

在 Transformer 的模型结构中,Positional Encoding Layer 是将输入文本进行位置编码,使得模型知道每个词在文本中的绝对位置和相对位置。有时,当一个词的位置发生变化后,语义会发生巨大的变化,因此 Positional Encoding Layer 是至关重要的。

Transformer 原始论文中只给出了关键的编码公式,而我第一次看到这个公式时觉得晦涩难懂。深度学习课程的老师在课上讲解了之后,我还是不太明白。

\[ \begin{aligned} P E(p o s, 2 i+1)&=\cos \left(\frac{p o s}{10000^{2 i / d m o d e l}}\right) \\ P E(p o s, 2 i)&=\sin \left(\frac{p o s}{10000^{2 i / d m o d e l}}\right) \end{aligned} \]

终于,我找到了写得非常好的资料。作者从最简单的绝对位置编码(也就是将第一个位置编码为 1,第二个位置编码为 2,以此类推。这当然是最容易想到的方法。)开始介绍,一步一步引导我们为什么要用上面的公式。

image-20230430211441325

基于 Bert 的中文问答机器人

最终训练的模型已经部署到 Hugging Face,请尝试输入一些简单的中文段落和相关问题 🌝

本文基于 Bert 的中文分词和问答的预训练模型,利用 10, 000 余条中文问答数据进行微调,构建了能够理解中文段落并回答相关问题的问答机器人。用自定义的数据进行测试,模型的效果基本能达到“正确回答小学三年级以下的阅读理解题”的水平。

predict-james

这是我第一次完整地实现一个 NLP 项目。在这个过程中,我学习了如何使用预训练模型、中文分词、准备数据、文本编码与解码、设计问答机器的损失与优化目标、导出训练模型等技术,对问答领域的 NLP 有了更透彻的理解。

理论部分可参考李沐老师的 Transformer 论文逐段精读【论文精读】BERT 论文逐段精读【论文精读】。当然,如果想要理解得更透彻一些,还是应该动手写代码,看看每一步到底在做什么,到真正实现出来看到模型结果的那一刻,是非常有成就感的。

不同 GPU 平台的训练效率对比

为对比不同平台上的 GPU 的训练效率的差异,我在 Kaggle、Google Colab、趋动云和本地的 Macbook Pro M1 Pro 四台机器上分别进行了训练。对于单个 Epoch:

  1. 付费使用的趋动云使用 2 个 GPU 并行训练,效率最高,单个 Epoch 共耗时 4 分 40 秒;
  2. 免费使用的 Kaggle 耗时 9 分钟,Google Colab 耗时 17 分钟;
  3. 在 Macbook Pro M1 Pro 上运行效率最低,即使使用了 GPU,单个 Epoch 仍预计耗时 3 小时。