基于强化学习 DQN 算法的登月着陆机器人
本文基于强化学习 DQN 算法,训练了一个登月着陆机器人。它能够采取向左右移动、向下喷射减缓速度等动作,在有干扰的环境下准确地降落在月球表面的指定区域。
本文基于强化学习 DQN 算法,训练了一个登月着陆机器人。它能够采取向左右移动、向下喷射减缓速度等动作,在有干扰的环境下准确地降落在月球表面的指定区域。
Generative Pre-trained Transformer(GPT)系列是由 OpenAI 提出的非常强大的预训练语言模型,这一系列的模型可以在非常复杂的 NLP 任务中取得非常惊艳的效果,例如文章生成,代码生成,机器翻译,问答等,而完成这些任务甚至 并不需要有监督学习进行模型微调 。
本文梳理了 GPT 系列文章中介绍的的关键技术,包括:
在 Transformer 的模型结构中,Positional Encoding Layer 是将输入文本进行位置编码,使得模型知道每个词在文本中的绝对位置和相对位置。有时,当一个词的位置发生变化后,语义会发生巨大的变化,因此 Positional Encoding Layer 是至关重要的。
Transformer 原始论文中只给出了关键的编码公式,而我第一次看到这个公式时觉得晦涩难懂。深度学习课程的老师在课上讲解了之后,我还是不太明白。
终于,我找到了写得非常好的资料。作者从最简单的绝对位置编码(也就是将第一个位置编码为 1,第二个位置编码为 2,以此类推。这当然是最容易想到的方法。)开始介绍,一步一步引导我们为什么要用上面的公式。

最终训练的模型已经部署到 Hugging Face,请尝试输入一些简单的中文段落和相关问题
本文基于 Bert 的中文分词和问答的预训练模型,利用 10, 000 余条中文问答数据进行微调,构建了能够理解中文段落并回答相关问题的问答机器人。用自定义的数据进行测试,模型的效果基本能达到“正确回答小学三年级以下的阅读理解题”的水平。

这是我第一次完整地实现一个 NLP 项目。在这个过程中,我学习了如何使用预训练模型、中文分词、准备数据、文本编码与解码、设计问答机器的损失与优化目标、导出训练模型等技术,对问答领域的 NLP 有了更透彻的理解。
理论部分可参考李沐老师的 Transformer 论文逐段精读【论文精读】 和 BERT 论文逐段精读【论文精读】。当然,如果想要理解得更透彻一些,还是应该动手写代码,看看每一步到底在做什么,到真正实现出来看到模型结果的那一刻,是非常有成就感的。
不同 GPU 平台的训练效率对比
为对比不同平台上的 GPU 的训练效率的差异,我在 Kaggle、Google Colab、趋动云和本地的 Macbook Pro M1 Pro 四台机器上分别进行了训练。对于单个 Epoch: