理解 PyTorch 中的 CrossEntropyLoss
在机器学习中,特别是处理分类问题时,损失函数是衡量模型预测与实际标签差异的关键。在 PyTorch 中,CrossEntropyLoss
是一个常用的损失函数,用于分类问题。它首先通过 Softmax 函数计算对应类别的概率值,然后计算每个样本的负对数似然损失,最后对所有样本的损失值求平均。
本文将通过一个简单的例子来手动计算CrossEntropyLoss
,并展示如何使用 PyTorch 实现这一过程。