使用 sklearn 实现决策树分类算法
基于 Information Value 对类别特征进行初步筛选,使用 sklearn 实现决策树分类算法,对客户流失情况进行分类预测,汇报 Accuracy、Presicion、Recall、F1、AUC 等评价指标。
基于 Information Value 对类别特征进行初步筛选,使用 sklearn 实现决策树分类算法,对客户流失情况进行分类预测,汇报 Accuracy、Presicion、Recall、F1、AUC 等评价指标。
使用 Lagrangian 乘子法、投影梯度算法、罚函数法求解有约束的优化问题。
推导二元 Logistic 回归的 Hessian 矩阵,利用牛顿法和拟牛顿 BFGS 法求回归系数的极大似然估计。所得模型在训练样本的预测准确度为 78%。
利用必要的矩阵求导法则,推导最小二乘法的矩阵形式。
用数值近似法求函数在某点的梯度,用回溯线搜索法控制步长,应用梯度下降法求函数极值。
梯度下降的思想是:对某一初始值,不断改变这一初始值,且每一步都朝着能使函数值减小的方向改变,最终函数值几乎不再变小,我们就认为达到了极小值点。