所有文章
AlphaNet-V3——调整网络结构和预测目标
在 AlphaNet-V1 加入多步长的特征提取层,将池化层替换为门控循环单元(GRU),并尝试预测收益率和超额收益的方向。最后将随机森林模型作为 baseline 进行比较。
AlphaNet——基于深度学习的量价因子挖掘
借鉴卷积神经网络的思想,通过自定义运算符函数,构造类似卷积层的特征提取层。结合批标准化层、池化层、全连接层,搭建 AlphaNet-V1,实现从量价数据到收益率预测的自动挖掘。
PyTorch 处理二分类问题
在量化研究中,将预测收益率数值的回归问题转换为预测涨跌、预测超额收益的正负等二分类问题是十分常见的。在 PyTorch 中可以修改部分代码,让回归问题的网络结构在二分类问题中也同样适用。
在 pandas 中计算方差
pandas 默认的.var()
方法计算的是样本方差,即自由度为\(N-1\)。若想计算总体方差,需指定参数ddof=0
(1)。
- Delta Degrees of Freedom。当指定
ddof
时,计算方差的分母为N-ddof
。
总结
- pandas 中的
var()
默认的自由度是 n-1,即var(ddof=1)
; - NumPy 中的
var()
默认的自由度是 n,即var(ddof=0)
; - pandas 中的
var(ddof=0)
相当于 NumPy 中的var()
。