跳转至

所有文章

基于逐笔委托和逐笔成交数据构造高频因子

量化投资策略设计与分析的第一次作业是基于逐笔数据构造 39 个高频因子。我对高频因子的构造经验比较少,完成这个作业后的一些经验:

  1. 高频因子的数据格式是比较标准化的,但也要注意细节:例如空缺时间的填补等。
  2. 构造因子的过程本质上是数据处理的过程,常用的方法有:groupbyresampleto_datetimereindexrollingapply等。如果是非常大的数据集,应当用 numpy 等更快速的科学计算包,或者用C++

39 个因子表达式

用提供的某支证券为期不超过一周的高频数据复制 Table A2 中 39 种指标。

image-20230314121903928

基于 ChatGPT 的在线问答机器人

本文介绍了如何基于 OpenAI ChatGPT 接口和 feffery components 构建在线问答机器人,并基于 render 实现自动化持续部署。

它支持:

  1. 开启多轮对话模式,它将记住你之前的问题。
  2. 导出当前对话记录为 Markdown 文件,你可以将其保存到本地。
  3. 一键清空当前对话记录。

使用它!

image-20230305114453764

PyTorch 基础

本文是深度学习课程的学习笔记,介绍了:

  1. 安装 GPU 版本的 PyTorch。
  2. PyTorch 的基本用法,例如创建张量、张量运算、求解梯度等。

Typora 设置默认代码语言

在 Typora 中可以插入代码块,但每次都需要手动添加语言。若经常需要插入同一种语言的代码块,可以借助第三方的快捷键工具 AutoHotkey,自动设置代码块的语言,提高工作效率。

VS Code 代码片段

许多常用的代码片段是重复、通用的,将它们记录并整理起来,在需要时可以方便地调用,可以大幅提高编码效率。

VS Code 代码片段功能是一个非常好用的功能,在保存代码片段后,只需输入几个前缀,即可自动生成代码片段。

利用 snippet-generator 这个工具自动生成代码片段,可以让整理代码片段的过程更高效!

vscode-snippets

LightGBM 的用法

LightGBM 是一种基于决策树的梯度提升机(GBM)算法,它是一种快速、准确的机器学习算法,可以用于分类和回归问题。

本文介绍了 LightGBM 的使用方法和代码示例,并记录了自定义损失函数、打印训练过程、迭代次数参数等问题的解决方法。

LightGBM_logo_black_text

每月底买入行业内 PB 较低的股票:一个简单的选股策略回测

本文回顾了量化投资策略设计与分析课程的一次课前练习。本练习给定的数据都比较整洁、规范,选股逻辑也比较简单清晰,是一个很好的实现选股回测的练习机会。

策略描述

策略描述

请把给定的股票数据,根据行业分类(申万一级行业),分别对每一行业的股票按 PB 由低到高分为 5 组,每月第一个交易日买入那些上月 PB 处于所在行业排名最低 20% 分位组(即 PB 由低到高排序的第一组)的股票,持有 1 个月,每月换仓一次,计算该投资组合的持仓年化收益率和夏普比率,并画出累计净值曲线。